

New Approaches to Energy Efficiency & Green Building

Control of Air Leakage and Moisture Vapour Transmission

Who is Icynene Inc.?

- Founded in November, 1986 in Toronto Canada
- Product : soft low density foam insulation.
- A Green product
 - which uses water as the agent of expansion
 contains no HCFC's, HFA's, formaldehyde
 PBDE's or volatile organics
- An air barrier and insulation in one which is breatheable

The Icynene Insulation System®

- Icynene Inc. is a member of Green Building organizations around the world
- The product has been used in "Health Houses" for asthmatics sponsored by the American Lung Association
- 21 years of experience and over 150,000 buildings of all types insulated –schools, hospitals, museums, art galleries, laboratories, churches, factories, residentia

Buildings Contribute to Global Warming

- 40% of energy is used by residential and commercial buildings.
- 40% by transportation.
- 20% by industrial processes.

We must reduce the use of energy in modern buildings and retrofit older structures to reduce carbon dioxide emission.

Building Practices Today

- Thermal Resistance (R-Value) is still the focus of gov't and the public.
- Energy Codes are mistakenly increasing R-Value requirements.
- Increased Costs
- Condensation Problems / Mold

Types of Energy Transfer

- **»Conduction**
- **»Convection**
- »Radiation
- »Mass Transfer

Note that R-value only measures conduction

How Insulation Works

- Conduction is heat transfer through a solid material, or between two materials in direct contact.
- When a steel pot is placed on a hot stove, the handle will become hot due to Conduction.

Insulation is tested for & designed for its ability to resist conduction

Common Air Leakage Pathways

- Cracks in masonry
- Poor or non-existent mortar joints
- Plumbing and electrical wiring penetrations to the exterior
- Improper detailing of windows

Goals

- Air Leakage Control vs. R-Value
- Strategies to improve thermal performance
- Discuss control of condensation & mold
- Introduce low-density spray-in-place foam

Status of Modern Construction

- In the last 50 years there have been significant changes in the way buildings are constructed and the materials that are
- People believed that doubling the thickness of insulation doubled the energy savings.

What is Building Science?

- The study of the response of buildings, building materials and people to:
 - »Heat
 - »Air pressure
 - »Moisture
 - **»Sound**

Mold

- Increased awareness of indoor air quality and mold
- Dramatic rise in asthma

(American Lung Association)

- 72% increase in children
- 61% increase in adults

Mold

"A new study attributes nearly 100% of all chronic sinus infections to mold"

Mayo Clinic 1999/ USA Today

Moisture Control How do buildings get wet? 1. Bulk Moisture / Water - Foundation, Walls, and Roof - Capillary Action 2. Water Vapor - Air Transport - Vapor Diffusion

90% of <u>ALL</u> building failures in the United States are related to moisture.

ASHRAE

"Systems" Approach

A building is <u>not</u> a collection of individual building materials that will perform satisfactorily as long as we toss them together.

Rather it is a sum of <u>inter-dependent</u> components forming a system which will perform well only if appropriate components are chosen and installed properly.

What is Causing Problems?

- Deterioration of buildings due to moisture build up from air leakage and condensation.
- Increased Air Pressures
 - Increased use of (HVAC)
 - Increased height of buildings / stack effect
 - Mechanically forced air leakage leaky ducts

Air Leakage is the Problem

- One of the causes for condensation, mould and moisture damage is air leakage through air permeable insulation.
- Air Leakage brings heat and moisture from the outdoors into the building interior.
- Cold air conditioned air will not support as much humidity in the vapor state as warm air. Condensation can occur.

Common Air Leakage Pathways

- Cracks in masonry
- Poor or non-existent mortar joints
- Plumbing and electrical wiring penetrations to the exterior
- Improper detailing of windows

Cracks in masonry curtain wall at an airport

Examples of Air Leakage Issues with New and Existing Buildings overcome with Soft Foam

- Glass Spandrel panels
- Germ and toxic chemical migration in Laboratories and Hospitals – positive pressure
- Improper detailing of windows
- Gaps where walls meet floors
- Floors projected over unconditioned space

Examples of Air Leakage Issues in New and Existing Buildings Overcome with Soft Foam

- Glass Spandrel panels
- Germ and toxic chemical migration in Laboratories and Hospitals – positive pressure
- Improper detailing of windows
- Gaps where walls meet floors
- Floors projected over unconditioned space

Buildings will get wet

- Many buildings at some time will experience water in the interior in some fashion eg. roof leaks, condensation.
- The idea that a building can be totally waterproof is virtually impossible to achieve.
- Better to design using materials which, if they do become wet, can dry and resume their function without turning into mush or distorting.

Moisture Control

How do buildings get wet?

- 1. <u>Liquid Water Intrusion</u>
 - Foundation Walls and Roof Leaks
 - Improper window detailing
 - Plumbing Leaks
 - Capillary Action (Rising Damp)
- 2. Moisture Vapour Condensation
 - Air Transport
 - Vapour Diffusion

Hot Climates

- In the past, attic venting was introduced to remove heat.
- Venting was thought to prolong the life of asphalt shingles.
- Ducts installed above insulation layer in a hot/humid attic.

But.....

- Outside air is hot & humid
- Hot humid air in contact with metal ducts will condense

Ductwork In Attic

 Duct losses usually require an extra ton of cooling or more, and significantly increase energy consumption.

Recent Trends in Building Science

- Importance of Air Leakage now recognized
- R-Value not valid to predict insulation performance
- Vapor retarder / barrier losing prominence
- New Codes (IBC, IRC) being adopted which have a performance as well as a prescriptive option
- The Conditioned Attic (unvented) has been adopted by the National Codes

The Myth of R-Value

- Increasing R-Value
 - Will not substantially save energy
 - Is not cost effective
 - Does not address condensation issues

Controlling Air Leakage is key

Cost Effective Solution

Soft Foam Insulation - Spray Applied

- Superior Air Leakage control
- Draft free environment
- Helps control condensation / mold
- Significant reduction in energy usage
- Sound Attenuation

THANK YOU FOR YOUR TIME

Questions?

This concludes the American Institute of Architects Continuing Education Systems Program

The Icynene Insulation System®

- -Flexible, Low Density Foam
- -Non-Toxic / No Chemical Emissions
- -Effective R-Value / No Voids
- -Air Barrier / Pressure Boundary Saves 30--50% of Total Heat Loss
- -Canadian Advanced Technologies
- -20 Years / 150,000 + Projects
- -Spray and Cavity fill formulas
- -Sound Attenuation
- -Life Time Warranty

Incremental changes to R-value are not an answer

- Minimal benefit of adding R-Value realized only if insulation is installed perfectly:
 - No gaps, voids, air infiltration
 - No settling over time
- Perfect installation doesn't always happen:

Prescribed Installation

Cut insulation to accommodate wires & junction box, and completely fill the cavity

Compressed insulation and voids create cold