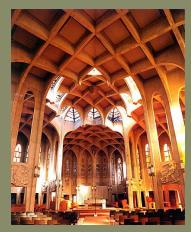


LEED™ and **CONCRETE**

Case Studies using Fly Ash

"The World will not evolve past its current state of crisis by using the same thinking that created the situation."

~ Albert Einstein


DIANA KLEIN LEED ™ AP, P. ENG. Sustainable Design Consultant

2006

MATERIALS AND SYSTEMS CONCRETE

UBC LIFE SCIENCES CENTRE

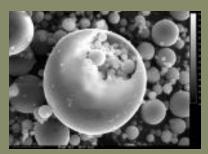
WESTMINSTER ABBEY

WHAT'S INHERENTLY GREEN?

- Good durability/longevity
- Mass can be used as a heat sink
- Locally produced with local raw material
- Little waste lok block, reuse of formwork, precast
- Versatile in form, to expose and efficient in use of material
- Good fire and acoustic resistance

HOW CAN CONCRETE BE GREENER

 Supplementary Cementing Materials (SCM's), to reduce cement in concrete


- silica fume
- Recycled water
- Good waste management plan
- Recycled aggregate
- Consider recyclability i.e. demountable systems
- Strategies for stormwater management and heat island effect

SUPPLEMENTARY CEMENTING MATERIALS FLY ASH

NATURAL POZZOLAN

FLY ASH

.....

- Consumes 5 million BTU of energy
- Uses 2 tonnes of raw materials

Releases 1 tonne of CO₂

FLY ASH:

- Is a waste product or the coal industry
- Benefits include:
 - Improved concrete properties
 - Environmental

1 TONNE OF CEMENT:

- Economic
- Challenges include:
 - Lower early strength gain
 - Curing

Eenent	Min. Srength (MPa)	Slunp (mm)	Max Agg. (mm)	Exposure Class	 Specifications Minimum cement
Slabs, Slab Bands, & Beams	30	70	20	N	targets Curing requirements
Interior Walls	25	80	20	N	Trial Mixes General Notes Drawings
Interior Columns	30	80	20	N	Performance information
Slab-on-grade (Interior Parking)	32	70	20	C-4	Curing requirements Pre-Construction Meeting
Exterior S.O.G, Sidewalks	32	70	20	C-2	Review and clarify requirements Be open for change
Footings	30	80	40	N	De open for change
Foundation Walls	30	80	20	F-2	
Exterior Columns	30	80	20	F-2	
Parkade Ramp	35	70	20	C-1	SPECIFYING THE USE OF SCM'S
Footings	25	80	40	N	
Foundation Walls	25	80	20	N	
S.O.G (Interior No Parking)	25	70	20	N	

CASE STUDY

TECHNOLOGY ENTERPRISES FACILITY III UBC - 2002

- Six-Storey facility with labs / offices
- LEED[™] Silver
- Specific green structural goals
 - Adaptability
 - De-materialization
 - Reduce cement
 - no impact to cost and schedule
 - Early strength tests/solutions

Integrated Design Team

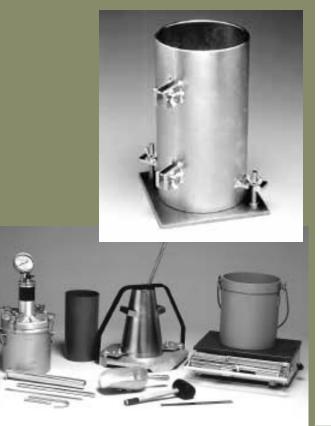
Client:	Discovery Parks Inc.
Architect:	Chernoff Thompson Arch.
Structural Eng:	Read Jones Christoffersen
Materials Eng:	Levelton Engineering
Contractor:	Stuart Olson Const.
Concrete Supp	ly: Rempel Bros. Concrete

CASE STUDY - TECHNOLOGY ENTERPRISES FACILITY III UBC - 2002

Element	Design Strength Mpa	Volume of Element/	(Cement/Total Cementitious	Cylinder Test Results Mpa (psi)		
	(psi)	Total Volume	Material)	3 Day	7 Day	28 Day
Footings	30 (4350) at 90 days	15%	58%	14.6	20.4	27
	Joudys			(2117)	(2958)	(3915)
Columns	40 (5800) at	25%	65%	29.7	43	51.5
and Walls	56 days			(4307)	(6235)	(7468)
Slabs and	25 (3625) at	51%	74%	14.8	23	30
bands	56 days			(2146)	(3335)	(4350)
Parking	35 (5075) at	9%	76%	18	34.3	40.6
slabs and bands	28 days			(2610)	(4974)	(5887)

CASE STUDY

TECHNOLOGY ENTERPRISES FACILITY III UBC - 2002



- Options to achieve a higher early strengths with fly ash concrete
 - Lower the water/cement ratio and add plasticizer
 - Add an accelerator
 - Reduce the air content
- Alternate options researched
 - Formwork adaptation
 - Insitu tests

CONCRETE STRENGTH MEASUREMENT

Methods of Testing:

- Lab-cured cylinders
 - Do not reflect site temperatures
 - Use for long term strength measurements
- Traditional field-cured cylinders
 - Sit below hoarding, next to pour
 - Do not benefit from the mass heat
- Lok tests
 - Cast in, measure in-situ strength
 - Measures surface concrete strength
- Cast-in-place punch-out cylinder (CIPPOC) tests
 - ✤ Cast in, measure in-situ strength
 - Requires transportation
 - Plastic sleeve blocks some of the mass heat

CASE STUDY: BISON COURTYARD, BANFF, ALBERTA

FLY ASH USE

- 40% cement replacement
 - Footings
 - ♦ Walls
- ✤ 35% cement replacement
 - Columns
- 30%, 35%, 40% cement replacement
 Suspended slabs
- 25% cement replacement
 Parkade slab-on-grade

Client: Project Manager: Concept Architect: Primary Architect: Structural Engineer: Arctos & Bird Management PCL Construction William McDonough + Partners Zeidler Carruthers & Associates Read Jones Christoffersen Ltd.

CASE STUDY: BRIDGES – THE VENTO CALGARY

FLY ASH USE

- 50% cement replacement
 - Footings
 - Columns
- 45% cement replacement
 - Walls
- 40% cement replacement
 - Suspended slabs
 - Slabs-on-grade

Client: Project Manager: Architect: Structural Engineer: Windmill Developments Stuart Olson Contracting Inc. Busby, Perkins + Will Read Jones Christoffersen Ltd.

Read Jones Christoffersen Consulting Engineers

CEMENT REPLACEMENT

% Fly Ash = % Cement Reduction?

* 30MPa Mix – 300 kg cement

* 40% cement replacement = 120 kg

* "40% Fly Ash Mix"

144 kg fly ash

216 kg cement

360 kg total CM

Actual cement reduction = 84 kg

(only a 28% reduction)