

The Trend

Concrete is a dominant construction material with increasing use worldwide resulting in increasing demand for cement

The Objectives

Develop a partnership with industry and professionals To minimize GHG "signature" of concrete by replacing portland cement with SCM or reduce the amount of concrete per use

Through technological developments in

ECOSMART CONCRETE

- SCM
- Design
- Construction

 EcoSmart Formula

 Less

 CO2 per unit of Concrete

 Same or Better

 Cost

 Performance

 Ease of Construction

A Concrete Contribution to the Environment

LEED Rating

	Concrete Building			Steel Building		
\$/ft	Cost	Mat	%	Cost	Mat	%
Concrete	3.5	1.8	3.5%	2.2	1.1	2.2%
Rebar	3.5	1.8	3.5%	1.2	0.6	1.2%
Formwork	13.0	6.5	13.0%	2.2	1.1	2.2%
Structural Steel				14.4	7.2	14.4%
Other materials	80.0	40.0	80.0%	80.0	40.0	80.0%
Total	100.0	50.0	100.0%	100.0	50.0	100.0%
	UT THE PURCHASE AND ADDRESS OF					
ECOSA	ART	CONCI	RELE			

Component	Min 28/56 Day Strength Mpa (Ksi)	Fly Ash Content %	Air Content %	Exp. Class
Footings	25 (36)	50		
Foundation Walls/Shear Walls	30 (44)	50		
Foundation Walls exposed to				
freezing and Thawing	30 (44)	50	4-7	F2
Walls Above Grade	25 (36)	50		
Columns	30 (44)	50		
Columns exposed to freezing & thawing	30 (44)	50	4-7	F2
Suspended Slabs, Beams - Exterior Slab on Grade & other	25 (36)	50		
concrete exposed to de-icing	32 (46)	0	5-8	C2
Interior Slab on Grade	25 (36)	50		

Concrete	•	Steel		
Project Cost \$/ft	100	Project Cost \$/ft	100	
Material value \$/ft	50	Material value \$/ft	50	
Concrete value %	(3.5%)	Steel value %	14.4%	
Concrete Value \$/ft2	1.75	Steel value \$/ft2	7.2	
FA in cement %	50%			
% cement in Concrete	12.5%			
% FA in Concrete	6.3%	% recycled	100%	
Recycled value \$/ft	0.109375	Recycled Value	7.2	
% value recycled/Total	0.22%	% value	14.4%	
% for points	(0.11%)	% for points	14.4%	
Credit MR 4.1	\sim	Credit MR 4.1	1	
Credit MR 4.2	0	Credit MR 4.2	1	
Total	0	Total	2	
Ratio concrete /steel	131.7			
ECOSMART	CONC	RETE		
CONTRACTOR .				

Environmental Impact Reduction

Saving kg/ft2	Concrete 50% FA	Steel 100% recycled
CO2	1.97	5.39
Fuel (Coal)	0.66	2.08
Primary material (Limestone/Iron Ore)	3.28	4.09
Secondary material (Shale /Limestone)	0.44	0.18
same order of magnitude		
ECOSMART CONCRETE		
A Concrete Contr	ibution to the Er	vironment

In Conclusion

- 1. Use of SCM reduces significantly the GHG signature of Concrete.
- Case studies have shown HVSCM (35%-45%) are achievable without major impact on cost or construction.
- 3. Future LEED versions need to recognize the environmental benefits of SCMs....
- 4. ...particularly in the context of Climate Change.

